Periodic Trends for Transition Metal Dihydrides MH_2 , Dihydride Dihydrogen Complexes $MH_2 \cdot H_2$, and Tetrahydrides MH_4 (M = Ti, V, and Cr)

Buyong Ma, Charlene L. Collins, and Henry F. Schaefer III*

Contribution from the Center for Computational Quantum Chemistry, The University of Georgia, Athens, Georgia 30602

Received April 28, 1995[⊗]

Abstract: Ab initio quantum mechanical methods were employed to study the periodic trends of transition metal (M = Ti, V, and Cr) hydrides MH₂, dihydride dihydrogen complexes MH₂·H₂, and tetrahydrides MH₄. The configuration interaction with single and double excitations (CISD), coupled cluster including all single and double substitutions (CCSD) methods, and CCSD with the effects of connected triple excitation added perturbatively [CCSD(T)] were used with the TZP, TZP+f, and TZP(f,d) basis sets. The ground electronic states for TiH_2 and VH_2 were found to be ${}^{3}B_{1}$ and ${}^{4}B_{2}$, respectively. The bond angles for the TiH₂ and VH₂ molecules are predicted to be 142° and 139°, respectively, at the TZP(f,d) CISD level of theory. On the low-spin potential energy surfaces, the lowest lying electronic states for the TiH₂, VH₂, and CrH₂ molecules are ${}^{1}A_{1}$, ${}^{2}A_{1}$, and ${}^{3}B_{2}$, respectively. The energy separations between the ground state and the lowest lying low-spin state were found to be 33, 40, and 59 kcal mol⁻¹ for the TiH₂, VH₂, and CrH₂ molecules, respectively, at the TZP CCSD level of theory. The binding energies of the dihydride dihydrogen complexes decrease with increasing atomic number. The $d \rightarrow \sigma^*$ back donation dominates the periodic trend for the formation of low-spin $MH_2 \cdot H_2$ complexes. All three $MH_2 \cdot H_2$ complexes are in the high-spin ground state, primarily due to the fact that the corresponding parent dihydrides have high-spin ground states. The low-spin dihydrides interact with the H₂ moiety more strongly than do the high-spin species. The $d \rightarrow \sigma^*$ back donation was so strong for the low-spin TiH₂ that H₂ dissociates without barrier upon contact with singlet TiH₂ to form TiH₄. Due to the Jahn-Teller distortion the ground state of VH₄ is the ${}^{2}A_{1}$ electronic state having D_{2d} symmetry. TiH₄ is predicted to lie 9 kcal mol⁻¹ lower in energy than its ground state $MH_2 \cdot H_2$ isomer, whereas VH₄ and CrH₄ are higher in energy by 22 and 39 kcal mol⁻¹, respectively, at the TZP CCSD level of theory. However, comparing MH₄ and MH₂·H₂ in the same spin state, MH₄ is always lower in energy than its dihydrogen complex isomer, MH_2 · H_2 , on the low-spin potential energy surface. Comparison between the present work and experimental IR spectra from the matrix isolation of the cocondesation of transition metal atoms (Ti, V, and Cr) with H_2 molecules confirmed the existence of CrH_2 · H_2 by identifying a strong unique absorption at 1510 cm⁻¹. It was found TiH₂· H_2 rather than TiH₂ may be observed experimentally, and that VH₂·H₂ may be formed concomitantly with the VH₂ molecule.

1. Introduction

Transition metal hydrides have long been of interest because of their key role in catalytic hydrogenation processes.^{1–8} The recent recognition of the so-called nonclassical hydride complexes, containing the dihydrogen ligand, has opened a new field of investigation.^{1–3} The discovery¹ of the first dihydrogen complex by Kubas et al. was one of the most exciting results in inorganic chemistry in the 1980s. For the new dihydrogen complexes, the H₂ ligand was shown to be bound as an intact

(8) Tyrrell, J.; Youakim, A. J. Phys. Chem. 1981, 85, 3614.

molecule (structure **A**) rather than in the usual dihydride form (**B**).

The bonding in metal dihydrogen complexes (A) has been described using a model similar to that for the binding to ethylene and other related ligands.² There are two important factors in such a model. One is that the electron donation from the filled H₂ (σ) orbital to the empty M (d_{σ}) orbital weakens, but does not break, the H–H bond because the resulting two-electron, three-center orbitals are delocalized over all three atoms. Another is the "back-donation" of electrons from the filled metal d_{π} orbitals into the empty H₂ (σ *) orbital, which tends to break the H–H bond.

Although the initial focus of work in the field has been the synthesis of new dihydrogen complexes as well as the description of their structure and bonding, more recent work has addressed reactivity of these interesting molecules, including dihydrogen/dihydride interconversion.^{2c} There is a set of obvious questions,^{2a} including: what factors influence the

0\$12.00/0 © 1996 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, January 15, 1996.

^{(1) (}a) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. **1984**, 106, 451. (b) Kubas, G. J. Acc. Chem. Res. **1988**, 21, 120; Comments Inorg. Chem. **1988**, 7, 17.

^{(2) (}a) Burdett, J. K.; Eisenstein, O.; Jackson, S. A. In *Transition Metal Hydrides*; Dedieu, A., Ed.; VCH Publisher, Inc.: New York, 1992; p 149.
(b) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95. (c) Heinekey, D. M.; Oldham, W. J. Chem. Rev. 1993, 93, 913.

⁽³⁾ Crabtree, R. H. Chem. Rev. 1985, 85, 245.

^{(4) (}a) Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. 1991,

^{95, 2696;} J. Phys. Chem. 1992, 96, 636. (b) Van Zee, R. J.; Li, S.; Weltner,

W. J. Chem. Phys. 1995, 102, 4367.
 (5) Hood, D. M.; Pitzer, R. M.; Schaefer, H. F. J. Chem. Phys. 1979,

⁽⁵⁾ Hold, D. M., Hizer, K. M., Schaeler, H. F. J. Chem. 1995. 71, 705.

⁽⁶⁾ Thomas, J. R.; Quelch, G. E.; Seidl, E. T.; Schaefer, H. F. J. Chem. Phys. **1992**, *96*, 6857.

⁽⁷⁾ Demuynck, J.; Schaefer, H. F. J. Chem. Phys. 1980, 72, 311.

stability of dihydrogen complexes? and, what are the electronic features that stabilize this nonclassic arrangement (**A**) relative to its classical analog (**B**)? Apparently, much more work is required for a complete description of this novel bond and its reactions. Principles that emerge are likely to be relevant to other problems, such as the functionalization of inactivated C–H bonds.³

We present here our theoretical study of three of the simplest possible dihydrogen complexes, namely $TiH_2 \cdot H_2$, $VH_2 \cdot H_2$, and $CrH_2 \cdot H_2$. The results include the structures, potential energy surfaces, and vibrational frequencies of related species. For these three complexes, only CrH₂·H₂ has been observed experimentally, as an intermediate in a matrix isolation IR experiment.⁴ The possible existence of $TiH_2 \cdot H_2$ or $VH_2 \cdot H_2$ is important since no dihydrogen complex involving Ti or V elements had been reported^{2c} as of early 1995. If confirmed to exist, then TiH₂·H₂, VH₂·H₂, and CrH₂·H₂ will be the first homoleptic dihydrogen complex ever reported and would provide important information about dihydrogen complexes, due to the simplicity of the $MH_2 \cdot H_2$ complexes. Additionally, energetic comparisons with their MH₄ isomers could be used to understand the dihydrogen/hydride interconversion. However, little is known from experiment about MH₄ molecules.⁵ even though mono- and ihydrides (MH and MH₂) have been studied intensively. In fact TiH₄, MoH₄, and NbH₄ are the only three tetrahydrides for which there are any significant laboratory data.4

Several experiments have been performed to study the cocondensation of light transition metal atoms (Ti, V, and Cr) with hydrogen molecules via matrix isolation, followed by photolysis.⁴ Upon analyzing the IR spectra of the photolysis products, Xiao, Hauge, and Margrave assigned the IR frequencies for TiH₂, TiH₄, VH₂, CrH₂, CrH₃, and CrH₂·H₂ and found all the MH₂ molecules to be bent.^{4a} However, the latest ESR studies of VH₂ indicated that VH₂ may be linear, and attempts to observe VH₄ via ESR were not successful, presumably because it could not be prepared in high enough concentrations.^{4b} Three questions may arise from these experimental results: 1. Both bent and linear structures^{7,8} of TiH₂ and only linear structures⁸ of VH₂ have been previously predicted by the Hartree-Fock SCF method. Thus, what are the ground electronic states and structures for the MH₂ molecules at correlated levels of theory? 2. Why was the $CrH_2 \cdot H_2$ complex detected whereas the TiH₂·H₂ and VH₂·H₂ complexes remain elusive? 3. Why was the TiH_4 molecule detected while the VH₄ and CrH₄ molecules remain elusive? Since the main experimental tool employed is analysis of IR spectra and ESR spectra, a detailed study of the potential energy surfaces of MH₂, MH₂·H₂, and MH₄ molecules is desired.

2. Theoretical Methods

The basis sets used here are the Wachters bases⁹ (14s11p6d/10s8p3d) with the addition of two sets of p functions and one set of diffuse d functions for Ti, V, and Cr atoms, respectively. The contraction of the primitive Gaussian bases for the transition metal atoms followed the recommendations of Hood, Pitzer, and Schaefer.⁵ Moreover, f type functions are also added into the basis sets for the transition metal atoms. The exponent of the f functions for the Cr atom is taken from ref 10,

and those for the Ti and V atoms are obtained by keeping the same α_d/α_f ratio as that for the Cr atom. The exponents for the additional p, d, and f functions are

$$\alpha_{p}(Ti) = 0.156$$
 and 0.0611; $\alpha_{d}(Ti) = 0.072$; $\alpha_{f}(Ti) = 0.9$

$$\alpha_p(V)=0.175$$
 and 0.068; $\alpha_d(V)=0.082;$ $\alpha_f(V)=1.0$

$$\alpha_{\rm p}({\rm Cr}) = 0.192$$
 and 0.075; $\alpha_{\rm d}({\rm Cr}) = 0.0912$; $\alpha_{\rm f}({\rm Cr}) = 1.14$

The hydrogen atoms were described using a (5s1p/3s1p) basis set.¹¹ For the hydrogen atoms in the Cr system, the standard TZP basis set¹¹ is used. For the hydrogen atoms in the Ti and V systems, the s functions were scaled by a factor of 1.2. Therefore, throughout the text, the TZP basis set refers to Wachters basis (14s11p6d/10s8p3d) for transition metal atoms and the (5s1p/3s1p) basis set for hydrogen atoms; the TZP+f basis set refers to adding f functions to the TZP basis set, and TZP(f,d) refers to adding hydrogen d functions to the TZP+f basis set. Spherical d and f functions were used throughout the text unless Cartesian d and f functions are indicated explicitly.

The simple Hartree-Fock self-consistent-field (SCF) method is found to be insufficient for the system studied here, especially for the dihydrogen complexes-the potential energy surfaces are too different from those reliably determined using correlated levels of theory. Therefore, the configuration interaction method including all single and double excitations (CISD)12 was used to optimize the geometries, and harmonic vibrational frequencies are evaluated at the CISD level. Finally, single-point energies were obtained with the coupled cluster method with the single- and double-substitutions (CCSD)¹³ method, as well as CCSD with the effects of connected triple excitations added perturbatively [CCSD(T)], to recover a larger fraction of the correlation energy and to avoid the size-consistency problem in the CISD method. For the CISD, CCSD, and CCSD(T) methods, the core-like (1s, 2s, and 2p for transition metals) SCF molecular orbitals were constrained to be fully occupied in all configurations. However, no corresponding core-like virtual orbitals were excluded from the CISD, CCSD, and CCSD(T) procedures.

For the linear MH₂ (M = Ti, V, Cr) molecule, the electron configuration for the first 22 electrons is [core] $4\sigma_g^{23}\sigma_u^{2}$ and the available low-lying molecular orbitals (MO) for the unpaired electrons are likely^{7,8} to be $1\delta_g$, $1\pi_g$, and $5\sigma_g$. In $C_{2\nu}$ symmetry MO labels, the electron configuration for the first 22 electrons is [core] $6a_1^{23}b_2^{2}$ and the available low-lying molecular orbitals for the unpaired electrons are 7a₁ and 3b₁ ($1\delta_g$), 1a₂ and 4b₂ ($1\pi_g$), and 8a₁ ($5\sigma_g$). The computations were performed using the program PSI developed by our research group.¹⁴

3. Results

A. Electronic Configuration and Equilibrium Geometry of VH₄. The electron configuration for the ground state of TiH₄ is unambiguous: $1a_1^22a_1^{-2}1t_2^{-6}3a_1^{-2}2t_2^{-6}4a_1^{-2}3t_2^{-6}$. However, for VH₄ there are two possible ground-state electronic configurations in T_d symmetry: ... $4a_1^{-2}3t_2^{-6}1e$ and ... $4a_1^{-2}3t_2^{-6}4t_2$, leading to ²E and ²T₂ electron states, respectively. A previous theoretical study⁵ of VH₄ predicted that the ²E state is 36 kcal mol⁻¹ lower in energy than the ²T₂ state, consistent with classical d orbital splitting by tetrahedral environments. This result was reproduced by the present study. However, because the degenerate 1e molecular orbital (MO) is singly occupied in the ²E state, a Jahn–Teller distortion is inevitable. As expected, a D_{2d} symmetry structure was found to be 3 kcal mol⁻¹ lower in energy than the ideal tetrahedral structure at the TZP SCF level. No further distortion from the D_{2d} structure was found, since

⁽⁹⁾ Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.

⁽¹⁰⁾ Scuseria, G. E.; Schaefer, H. F. Chem. Phys. Lett. 1990, 174, 501.
(11) (a) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. (b) Dunning, T. H. J. Chem. Phys. 1970, 53, 2823. (c) Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., Ed. Plenum Press: New York, 1977; Vol. 3, p 1.

^{(12) (}a) Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F. *J. Chem. Phys.* **1980**, *72*, 4652. (b) Rice, J. E.; Amos, R. D.; Handy, N. C.; Lee, T. J.; Schaefer, H. F. *J. Chem. Phys.* **1986**, *85*, 963.

^{(13) (}a) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
(b) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1989, 89, 7382.

⁽¹⁴⁾ PSI 2. 0.8; Janssen, C. L.; Seidl, E. T.; Hamilton, T. P.; Yamaguchi, Y.; Remington, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Fermann, J. T.; Allen, W. D.; Brooks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F. PSITECH, Inc., Watkinsville, GA, 30677, 1994.

Figure 1. (a) The equilibrium structure and total energy of the ${}^{2}A_{1}$ ground state of the VH₄ molecule. (b) The structure and total energy of the ${}^{2}B_{1}$ state of the VH₄ molecule. (c) The equilibrium structure and total energy of the ${}^{4}A''$ state of the VH₂•H₂ molecule. (d) The structure and total energy of the ${}^{2}A''$ state of the VH₂•H₂ molecule (lowest lying structure on the lowest doublet ($S = {}^{1}/{}_{2}$) potential surface). (e) The structure and total energy of the ${}^{4}A_{2}$ state of the VH₂•H₂ molecule (local minimum).

the singly occupied MO is totally symmetric in the D_{2d} point group. Therefore, the ground state electron configuration is $1a_1^22a_1^21b_1^21e^43a_1^22b_1^22e^44a_1^23b_1^23e^45a_1$, leading to ${}^{2}A_1$ symmetry. The bond length for the global minimum structure is 1.622 Å and the bond angles have been distorted from the ideal 109.7° for the tetrahedral structure to 114.1° and 100.5° for the distorted structure at the TZP(f,d) CISD level of theory (Figure 1a). The vibrational frequencies of VH₄ (VD₄) are reported in the supporting information, Table 1. There is another D_{2d}

Table 1. Structures and Energies for the TiH_2 Molecule at the TZP CISD Level of Theory^{*a*}

electronic	electronic	rel e (kcal	nergy mol ⁻¹)	geor	geometry		
state	config	CISD	CCSD^b	r (Å)	θ (deg)		
${}^{3}B_{1}$	$6a_1^2 3b_2^2 7a_1 3b_1$	0.00	0.00	1.804	148.4		
				(1.800)	(143.2)		
				1.790	142.1		
${}^{3}A_{1}$	$6a_1^2 3b_2^2 7a_1 8a_1$	0.04	0.01	1.805	149.5		
		(0.07)	(0.13)	(1.802)	(144.6)		
$^{3}\Delta_{g}$	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g} 5\sigma_{\rm g}$	0.64	1.31	1.826	180		
${}^{3}A_{2}^{0}$	$6a_1^2 3b_2^2 7a_1 1a_2$	5.61	7.05	1.844	150.8		
	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g}\pi_{\rm g}$	5.97	7.76	1.858	1.80		
	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g}^2$	34.56	32.6	1.859	180		

^{*a*} The values in parentheses are at the TZP+f CISD level of theory; and the values in boldface are at the TZP(f,d) CISD level of theory. Spherical d and f functions are used. ^{*b*} Based on the CCSD single-point energies at the CISD optimized geometries.

Table 2. Structures and Energies for the VH_2 Molecule at the TZP CISD Level of Theory^{*a*}

electronic	electronic	rel er (kcal i	nergy mol ⁻¹)	geometry		
state	config	CISD	CCSD^b	<i>r</i> (Å)	θ (deg)	
${}^{4}\mathbf{B}_{2}$	$6a_1{}^23b_2{}^27a_13b_11a_2$	0.00	0.00	1.766	144.7	
				(1.759) 1.749	(140.0) 138.8	
${}^{4}\mathbf{B}_{1}$	$6a_1^2 3b_2^2 7a_1 8a_1 3b_1$	2.00	0.66	1.766	144.5	
		2.80	1.50	1.749	137.4	
${}^{4}A_{2}$	$6a_1^2 3b_2^2 7a_1 3b_1 4b_2$		0.66	1.766	144.5	
$4\Pi_{g}$	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g}^2 1\pi_{\rm g}$	0.74	1.79	1.792	180	
-		1.27	2.84	1.783	180	
$4\Sigma_{\sigma}^{-}$	$4\sigma_{g}^{2}3\sigma_{u}^{2}1\delta_{g}^{2}5\sigma_{g}$	2.80	2.40	1.792	180	
${}^{4}A_{2}^{5}$	$6a_1^2 3b_2^2 7a_1 8a_1 1a_2$	5.89	3.45	1.724	131.5	
$^{4}\Delta_{ m g}$	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g} 1\pi_{\rm g}^2$	2.15	4.05	1.791	180	
${}^{2}A_{1}$	$6a_1^2 3b_2^2 3b_1^2 7a_1$	43.02	39.90	1.752	142.5	
${}^{2}\Gamma_{g}^{-}$	$4\sigma_{g}^{2}3\sigma_{u}^{2}1\delta_{g}^{2}5\sigma_{g}$	43.99	41.89	1.781	180	
${}^{2}A_{2}^{\circ}$	$6a_1^2 3b_2^2 3b_1^2 1a_2$	47.2	44.06	1.765	145.8	
	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g}^2 1\pi_{\rm g}$	47.79	45.3	1.788	180	
${}^{2}\mathbf{B}_{1}$	$6a_1^2 3b_2^2 3b_1^2 4b_1^2$	133.59		1.631	115.2	

^{*a*} The values in parentheses are at the TZP+f CISD level of theory; and the values in boldface are at the TZP(f,d) CISD level of theory. ^{*b*} Based on the TZP CCSD single-point energies at the CISD optimized geometries.

structure of VH₄ with electron configuration $1a_1^22a_1^21b_1^21e^{4}3a_1^22b_1^22e^44a_1^23b_1^23e^44b_1$, leading to 2B_1 symmetry (Figure 1b). This 2B_1 state of VH₄ is 13.7 kcal/mol higher in energy than the 2A_1 ground state at the TZP CCSD level.

We also studied possible planar configurations of VH₄. For the D_{4h} symmetry conformation, the V–H bond lengths are as long as 1.942 Å, and the energy is very high relative to the ground state. The optimization under planar C_{2v} and C_s symmetry constraints leads to the dissociation of the VH₂·H₂ complex at both SCF and CISD levels of theory. Therefore, we conclude that it is implausible for the VH₄ molecule to adapt a planar conformation.

B. Equilibrium Geometries and Potential Energy Surfaces of TiH₂, VH₂, and CrH₂. For TiH₂ (d²), VH₂ (d³) and CrH₂ (d⁴), a major problem is to predict the electronic configuration of the ground state. Demuynck and Schaefer,⁷ for example, listed at least ten most plausible electronic states assuming a triplet ground state and C_{2v} symmetry for the TiH₂ molecule. In the present study, we extensively examined the possible low-lying electronic configurations for TiH₂ and VH₂ at the TZP CISD level of theory. The most important results are reported in Tables 2 and 3. The detailed results for CrH₂ will be published separately.¹⁵ With the SCF method, only linear structures were obtained. However, we located both linear

⁽¹⁵⁾ DeLeeuw, B. J.; Schaefer, H. F. Mol. Phys. 1995, 84, 1109.

Table 3. Structures and Energies for the CrH_2 Molecule at the TZP CISD Level of Theory^{*a*}

electronic	electronic	rel er (kcal r	nergy nol ⁻¹) ^b	geometry		
state	config	CISD	CCSD	r (Å)	θ (deg)	
⁵ B ₂	$6a_1^2 3b_2^2 7a_1 3b_1 1a_2 8a_1$	0.00	0.00	1.682 1.664	125.2 121.8	
${}^{5}\Sigma_{a}^{+}$	$4\sigma_{\rm g}^2 3\sigma_{\rm u}^2 1\delta_{\rm g}^2 1\pi_{\rm g}^2$	-3.78	1.37	1.736	180	
${}^{3}A_{2}$	$4\sigma_{g}^{2}3\sigma_{u}^{2}1\delta_{g}^{2}1\pi_{g}5\sigma_{g}$ $6a_{1}^{2}3b_{2}^{2}3b_{1}^{2}7a_{1}1a_{2}$	56.1 58.2	58.6 60.43	1.728 1.685	180 129.5	

^{*a*} The values in boldface are at the TZP(f,d) CISD level of theory. ^{*b*} The CCSD energies are single-point energies at the CISD optimized geometries.

and bent structures with the CISD method for TiH_2 and VH_2 , indicating the importance of including electron correlation effects to investigate these hydrides in a reliable manner. The failure of the SCF level might find its origin in the poor description of the energetics of the atomic states involved in the bent structures compared with those involved in the linear structures.

For the TiH₂ molecule, there are two lowest-lying states which are almost energetically degenerate, having electron configurations of $6a_1^{2}3b_2^{2}7a_18a_1$ and $6a_1^{2}3b_2^{2}7a_13b_1$ in $C_{2\nu}$ symmetry, leading to ${}^{3}A_1$ and ${}^{3}B_1$ states, respectively. Both states have bent structures with very similar geometries (Table 1). The ${}^{3}A_1$ state was traditionally thought to be the best candidate for the ground state of the TiH₂ molecule.^{7,8} However, the ${}^{3}B_1$ state is 0.008 kcal mol⁻¹ lower in energy at the TZP CCSD level of theory and 0.13 kcal mol⁻¹ lower in energy at the TZP+f CCSD level of theory than the ${}^{3}A_1$ state. Therefore, the ${}^{3}B_1$ state may be the ground state of the TiH₂ molecule, the conclusion also reached recently by Kudo and Gordon.¹⁷ The slightly smaller bond angle for the ${}^{3}B_1$ state indicates that the $3d_M-1s_H$ interaction is stronger for the ${}^{3}B_1$ state than for the ${}^{3}A_1$ state.

The bond angle of TiH₂ is found to be sensitive to the inclusion of f functions. A similar situation was found for the VH₂ molecule (see the following results) and the CrH₂ molecule. The bond angle of TiH₂ is 5° smaller at the TZP+f CISD than that at the TZP CISD level of theory. However, the TiH₂ bond angle is only 1° smaller at the TZP(f,d) CISD than that at the TZP+f CISD level of theory, indicating a trend toward convergence. The TiH₂ bond angle may decrease slightly when a higher level of theory is employed. Therefore, the most reliable TiH₂ bond angle is 142.1°, which is just inside the lower limit of experimental deduction^{4a} (147 ± 5°). On the low-spin potential energy surface ([6 0 3 3] closed shell), TiH₂ has a linear structure and is 33 kcal mol⁻¹ higher in energy at the TZP CISD level of theory than the global minimum structure (bent ³B₁, Table 1).

For the VH₂ molecule, the ground state is unambiguous according to our study. The ⁴B₂ state with electronic configuration $6a_1^{2}3b_2^{2}7a_13b_11a_2$ is lowest in energy at both the TZP CISD and TZP CCSD levels of theory (Table 2). Two other states, namely ⁴B₁ and ⁴A₂, with electronic configruations of $6a_1^{2}3b_2^{2}7a_13b_18a_1$ and $6a_1^{2}3b_2^{2}7a_13b_14b_2$, respectively, are only 0.7 kcal mol⁻¹ higher in energy than the 4B₂ ground state. Tyrrell and Kouakin⁸ studied the VH₂ molecule using an *ab initio* ECP method, and obtained a linear structure with electronic configuration $4\sigma_g^{2}3\sigma_u^{2}1\delta_g 1\pi_g^{2}$, leading to a ⁴ Δ_g state. However, we found that the ⁴ Δ_g state is 4.1 kcal mol⁻¹ higher in energy than the ⁴B₂ state at the TZP CCSD level of theory.

There are two conflicting experimental geometries for VH₂. In 1991 Xiao, Hauge, and Margrave^{4a} observed the vibrational frequencies for both the symmetric and asymmetric VH₂

Figure 2. (a) The equilibrium structure and total energy of the ${}^{3}A''$ ground state of the TiH₂·H₂ complex. (b) The equilibrium structure and total energy of the ${}^{5}A_{1}$ ground state of the CrH₂·H₂ complex. (c) The structure and total energy of the ${}^{3}B_{2}$ state of the CrH₂·H₂ complex (lowest lying structure on the low-spin potential energy surfaces).

stretches, the infrared appearance of which may indicate a bent molecule. However, the 1995 ESR experiments by Van Zee, Li, and Weltner^{4b} indicated that the VH₂ molecule is either linear or a bent molecule that is rotating rapidly. Van Zee, Li, and Weltner concluded that the VH₂ is linear since rotation in the different experimental matrices (deuterium, argon, and krypton) seems unlikely. Van Zee concludes that the electronic ground state of VH₂ is of ${}^{4}\Sigma_{g}^{-}$ symmetry, arising from electron configuration $4\sigma_{g}{}^{2}3\sigma_{u}{}^{2}1\delta_{g}{}^{2}5\sigma_{g}$. However, our theoretical predictions support the experimental conclusions of Xiao, Hauge, and Margrave, who suggested a bent VH₂ molecule. We predict that the ${}^{4}\Sigma_{g}^{-}$ state of VH₂ lies 2.40 kcal mol⁻¹ above the ${}^{4}B_{2}$ state at the TZP CCSD level (Table 2). It is possible that VD₂ may be nearly linear in a deuterium matrix due to environmental effects (see section C).

The VH₂ bond angle is also sensitive to basis set. This angle is 4.7° smaller at the TZP+f CISD than at the TZP CISD level of theory. The VH₂ bond angle shrinks only 1.2° from the TZP+f CISD to the TZP(f,d) CISD level of theory, indicating a fair convergence. The VH₂ bond angle at the TZP(f,d) CISD level of theory is 138.8°, and that at a higher level of theory might be within the upper limit of the experimentally deduced value⁴ (131 ± 5°). On the low-spin potential energy surface, VH₂ also has a bent structure (²A₁, $\theta = 142.5^\circ$, see Table 3)

⁽¹⁶⁾ Elkind, J. L.; Armentrout, P. B. *J. Phys. Chem.* **1987**, *91*, 2037.(17) Kudo, T.; Grodon, M. S. Private communication.

and lies 40 kcal mol⁻¹ higher in energy than the global minimum structure (${}^{4}B_{2}$).

These high-level theoretical results agree with recent experiments⁴ in that both TiH_2 and VH_2 are bent. However, the comparison between our theoretical results and the experimental vibrational spectra indicates that the experimental assignments should perhaps be reassessed. We will compare theoretical and experimental assignments later (see Discussion).

We also studied the potential energy surface of the CrH₂ molecule (Table 3). A high-spin ⁵B₂ state bent structure was found to be the equilibrium structure and the detailed results will be published separately.¹⁵ The linear ⁵ Σ_{g}^{+} ($4\sigma_{g}^{2}3\sigma_{u}^{2}1\delta_{g}^{2}1\pi_{g}^{2}$) state of CrH₂ was higher in energy than the ground state CrH₂ by 1.37 kcal mol⁻¹ at the TZP CCSD level of theory, and by 4.2 kcal mol⁻¹ at the TZ2P+2f CCSD(T) level of theory.¹⁵ On the low-spin potential energy surfaces for CrH₂, there are two low-lying electronic configurations close in energy, namely $4\sigma_{g}^{2}3\sigma_{u}^{2}1\delta_{g}^{2}1\pi_{g}5\sigma_{g}$ and $6a_{1}^{2}3b_{2}^{2}3b_{1}^{2}7a_{1}1a_{2}$ (Table 3). A linear structure ($4\sigma_{g}^{2}3\sigma_{u}^{-1}\delta_{g}^{-1}1\pi_{g}5\sigma_{g}$) was found to be lowest in energy on the low-spin potential energy surface but lies 59 kcal mol⁻¹ higher in energy than the high-spin quintet state at the TZP CCSD level of theory.

C. Electronic Configuration and Equilibrium Geometries of TiH₂·H₂, VH₂·H₂, and CrH₂·H₂. I. TiH₂·H₂. For MH₂·H₂ complexes, including TiH₂·H₂, VH₂·H₂, and CrH₂·H₂, three arrangements in $C_{2\nu}$ symmetry are considered routinely:

The three lowest lying electron configurations of TiH₂ are 6a₁- ${}^{2}3b_{2}{}^{2}7a_{1}1a_{2}$, $6a_{1}{}^{2}3b_{2}{}^{2}7a_{1}8a_{1}$, and $6a_{1}{}^{2}3b_{2}{}^{2}7a_{1}3b_{1}$. Thus, for each of the TiH₂·H₂ arrangements we investigated three electronic configurations, i.e., 7a123b228a11a2, 7a123b228a19a1, and 7a1-²3b₂²7a₁3b₁, leading to ³A₂, ³A₁, and ³B₁ electronic states, respectively. However, we found that the C_{2v} potential energy surfaces for all three arrangements are repulsive between the TiH₂ and H₂ fragments, leading to more than 3.5 Å separation between the two fragments (supporting information, Table 7). TiH_2 and H_2 are attractive on the potential energy surface with C_s symmetry, as indicated in Figure 2a. TiH₂·H₂ thus has a ${}^{3}A''$ ground electronic state, which is formed by the H₂ molecule and the TiH₂ molecule in its ${}^{3}B_{1}$ ground electronic state. The dihydrogen bonding energy for TiH₂·H₂ was predicted to be 1.7 kcal mol⁻¹ at the TZP CCSD level of theory and 2.8 kcal mol^{-1} at the TZP(f,d) CCSD(T) level of theory:

$$\operatorname{TiH}_{2}({}^{3}\mathrm{B}_{1}) + \mathrm{H}_{2} \rightarrow \operatorname{TiH}_{2} \cdot \mathrm{H}_{2}({}^{3}\mathrm{A}'')$$
$$\Delta E = -2.8 \text{ kcal mol}^{-1} (1)$$

A possible closed shell singlet $TiH_2 \cdot H_2$ was also sought. However, on the singlet potential energy surface, the H_2 moiety dissociates without a barrier and optimization leads to the titane molecule (TiH₄). Therefore, the TiH₂ · H₂ species does not exist on the low-spin potential energy surface. II. VH₂·H₂. As for the TiH₂·H₂, we investigated the sideon planar and side-on ortho conformations for VH₂·H₂ with the various electronic states. The head-on conformation for VH₂·H₂ was tested with the electronic configuration $7a_1^{2}3b_2^{2}8a_11a_23b_1$, which originates from the ground ⁴B₂ state of VH₂. It was found that with the $7a_1^{2}3b_2^{2}8a_11a_23b_1$ electronic configuration, the potential energy surfaces for all three arrangements were repulsive between VH₂ and H₂.

With the $7a_1^2 3b_2^2 8a_1 4b_2 3b_1$ electronic configuration (⁴A₂), VH₂ and H₂ are attractive in both the side-on planar and the side-on ortho conformation, with the side-on planar conformation being lower in energy (Figure 1e and supporting information, Table 7). Both the ⁴A₂ and ⁴Π_g stages of VH₂ (Table 2) may lead to the ⁴A₂ state of VH₂·H₂. However, the nearly linear VH₂ fragment in the ⁴A₂ state of VH₂·H₂ (Figure 1d) suggests that the ⁴A₂ state of VH₂·H₂ is formed from the ⁴Π_g state of VH₂. In the *C_s* symmetry conformation (Figure 1c), the ⁴A₂ state of VH₂ (Table 2) lead to the ⁴A'' electronic state of VH₂·H₂, which is the ground state. The H₂ moiety positions itself directly above the VH₂ plane in this global minimum structure (Figure 1c).

We have also investigated the side-on planar and side-on ortho conformations of VH₂·H₂ on the low-spin potential energy surface. Both the $7a_1^{2}3b_2^{2}3b_1^{2}8a_1$ and $7a_1^{2}3b_2^{2}3b_1^{2}1a_2$ electronic configurations have been considered. The former configuration originates from the ²A₁ state of VH₂ ($6a_1^{2}3b_2^{2}3b_1^{2}7a_1$), which is the lowest state on the low-spin potential energy surface. The $7a_1^{2}3b_2^{2}3b_1^{2}1a_2$ electronic configuration is important for studing the formation of the VH₄ molecule, whose ground electronic state has the $7a_1^{2}3b_2^{2}3b_1^{2}1a_2$ electronic configuration in $C_{2\nu}$ symmetry.

Unlike the low-spin $TiH_2 \cdot H_2$, the low-spin $VH_2 \cdot H_2$ does correspond to a minimum on the potential energy surface. On the low-spin potential energy surfaces, VH2 and H2 are strongly attractive, with the side-on ortho conformation being lower in energy. The H₂ moiety for low-spin VH₂·H₂ is strongly activated in the side-on ortho conformation with $7a_1^2 3b_2^2 3b_1$ - $^{2}1a_{2}$ electronic configuration (supporting information, Table 7). The Jahn-Teller effect occurs here. The side-on ortho conformation in the ${}^{2}A_{1}$ state was a transition state to a lower C_{s} symmetry conformation (Figure 1d). The doublet $VH_2 \cdot H_2$ has C_s symmetry and the symmetry plane contains the H₂ moiety and bisects the VH₂ angle (Figure 1d). The interaction between the H_2 and VH_2 moieties is very strong in this ²A" state. The H-H distance is elongated to 0.831 Å and has a shorter V····H₂ distance than for the ⁴A" global minimum state. Despite structural sensitivity to basis set, the dihydrogen bonding energies for VH₂·H₂ are almost identical at the TZP CCSD and TZP(f,d) CCSD levels of theory, indicating a good energetic convergence. The binding energy between the two moieties is much higher in the low-spin state than in the high-spin state, as indicated by the exothermicities for the following reactions at the TZP(f,d) CCSD(T) level of theory:

$$VH_2(^2A_2) + H_2 \rightarrow VH_2 \cdot H_2(^2A'') \qquad \Delta E = -22.4 \text{ kcal mol}$$
(2)

VH₂ (⁴B₂) + H₂ → VH₂·H₂ (⁴A")
$$\Delta E = -7.1 \text{ kcal mol}^{-1} (3)$$

III. $CrH_2 \cdot H_2$. We investigated the side-on planar and sideon ortho conformations of $CrH_2 \cdot H_2$ with different electron configurations. Ground state CrH_2 (⁵B₂) was found to be weakly repulsive with respect to attachment of an H₂ molecule for both planar and ortho conformations (supporting information, Table 7). However, in the linear ⁵A₁ state, CrH_2 does attract the H₂

Periodic Trends for Transition Metal MH₂, MH₂·H₂, and MH₄

molecule. The side-on planar conformation with the $7a_1^{2}3b_2^{-2}8a_13b_11a_24b_2$ electronic configuration was found to be the ground state for the CrH₂·H₂ complex (Figure 2b). The CrH₂ moiety is still close to linear (176.3°) in the ⁵A₁ ground state of CrH₂·H₂. The side-on ortho conformation with the $7a_1^{2}3b_2^{-2}8a_13b_11a_24b_2$ electronic configuration is a transition state for the H₂ rotation. The rotation barrier was found to be 2.1 kcal mol⁻¹ at the TZP CISD level of theory.

On the low-spin potential energy surface, the interaction between the CrH₂ and H₂ fragments is fairly strong. We investigated the side-on ortho conformation with both the 7a₁- $^{2}3b_{2}^{2}3b_{1}^{2}4b_{1}1a_{2}$ and the $7a_{1}^{2}3b_{2}^{2}3b_{1}^{2}8a_{1}1a_{2}$ electronic configurations (supporting information, Table 7). The former configuration originates from the ³B₂ state of CrH₂, which is the lowest lying state on the low-spin potential energy surface. It is important to compare the latter configuration (³A₁) with the CrH₄ molecule, which has the same electronic configuration in C_{2v} symmetry. The ³B₂ state CrH₂·H₂ is a transition state with respect to the rotation of the H₂ moiety. Finally, we found that a C_2 symmetry CrH₂·H₂ structure with the ³B electronic state is the lowest in energy on the low-spin potential energy surface (Figure 2c). Similar to the case of VH₂·H₂, the interaction between the H₂ and CrH₂ moieties is stronger on the low-spin potential energy surface $({}^{3}B)$ than on the high-spin $({}^{5}A_{1})$ potential energy surface. The H-H bond (0.776 Å) is longer and the H₂…CrH₂ distance (1.805 Å) is shorter in the ³B state than for the ${}^{5}A_{1}$ state (0.753 and 2.058 Å, respectively). The binding energy between H₂ and CrH₂ parallel to that of the $VH_2 \cdot H_2$ system at the TZP(f,d) CCSD(T) level of theory is given by:

$$\operatorname{CrH}_{2}({}^{3}\operatorname{A}_{2}) + \operatorname{H}_{2} \rightarrow \operatorname{CrH}_{2} \cdot \operatorname{H}_{2}({}^{3}\operatorname{B})$$

$$\Delta E = -15.5 \text{ kcal mol}^{-1} (4)$$

$$\operatorname{CrH}_{2}({}^{3}\mathrm{A}_{1}) + \mathrm{H}_{2} \rightarrow \operatorname{CrH}_{2}\cdot\mathrm{H}_{2}({}^{3}\mathrm{A}_{1})$$

$$\Delta E = -3.1 \text{ kcal mol}^{-1} (5)$$

4. Discussion

A. Periodic Trends for MH₂ Molecules and MH₂·H₂ Complexes I. MH₂ Molecules. Even though the bonding in the cationic species essentially involves the valence s and d orbitals on the transition metal, the p orbitals also participate in the case of the neutral species. Previous SCF studies indicated that the 3d contribution to the MH₂ bonding should be strong for the three early elements of the first transition metal series (Ti, V, and Cr)^{5,7} even though at the SCF level, the $3d_M$ - $1s_H$ interaction is still too weak to overcome the $4sp_M-1s_H$ mixing which dominates the bonding scheme and determines the linear geometry. However, with electron correlation effects included, the 3d_M-1s_H interaction becomes more important and TiH₂, VH₂, and CrH₂ all have bent equilibrium structures on the high-spin potential energy surfaces. The bond angles decrease from TiH₂ via VH₂ to CrH₂, i.e., 142.1°, 138.8°, and 121.8°, respectively, at the TZP(f,d) CISD level of theory (Tables 1–3), indicating increasing $3d_M-1s_H$ interaction in the M-H bonding. This is reasonable. For example, the Cr atoms has a 3d⁵4s ground state. To form CrH₂, one of the d orbitals has to be involved in M-H bonding. However, it should be kept in mind that the 3d_M-1s_H interaction is still very weak in the absolute sense. The potential energy surfaces are very flat and the energy difference between linear and bent structures is very small. This is the main reason why the MH₂ bond angles in TiH₂, for instance, are sensitive to the basis set.

As can be seen from Figure 3, the energy separation between the high-spin ground state and the lowest low-spin state for isolated MH_2 molecules increases from right to left in the

Figure 3. (a) The energy separations between the ground states and the lowest lying low-spin states for the MH_2 molecules at the TZP CCSD level of theory. (b) The energy separations between the $MH_2 \cdot H_2$ and MH_4 isomers at the TZP CCSD level of theory.

periodic table: 33 kcal mol⁻¹ for TiH₂, 40 kcal mol⁻¹ for VH₂, and 59 kcal mol⁻¹ for CrH₂. This trend is important in understanding the relative energy between MH₂·H₂ and the MH₄ isomers. We will come back to this topic in the next section.

II. $MH_2 \cdot H_2$. We have mentioned the dihydrogen binding energy in the $MH_2 \cdot H_2$ complexes in previous sections; we list those reactions here to show the periodic trend.

$$\operatorname{TiH}_{2}({}^{3}\mathrm{A}_{1}) + \mathrm{H}_{2} \rightarrow \operatorname{TiH}_{2}\cdot\mathrm{H}_{2}({}^{3}\mathrm{A}'')$$
$$\Delta E = -2.8 \text{ kcal mol}^{-1} (1)$$

$$\operatorname{CrH}_{2}({}^{3}\mathrm{B}_{2}) + \mathrm{H}_{2} \rightarrow \operatorname{CrH}_{2}\cdot\mathrm{H}_{2}({}^{3}\mathrm{B})$$

$$\Delta E = -15.5 \text{ kcal mol}^{-1} (4)$$

$$\operatorname{CrH}_{2}({}^{\mathsf{S}}\mathsf{A}_{1}) + \operatorname{H}_{2} \to \operatorname{CrH}_{2} \cdot \operatorname{H}_{2}({}^{\mathsf{S}}\mathsf{A}_{1})$$
$$\Delta E = -3.1 \text{ kcal mol}^{-1} (5)$$

For the high-spin species the H₂ bond lengths are 0.758, 0.761, and 0.758 Å for the ³A" state of TiH₂·H₂, ⁴A" state of VH₂·H₂, and ⁵A₁ state of CrH₂·H₂, respectively. On the low-spin potential energy surfaces, the $d \rightarrow \sigma^*$ back-donation is so strong for the TiH₂ + H₂ system that the H₂ bond breaks without barrier upon forming the complex with singlet TiH₂, subsequently forming TiH₄. The H₂ bond length is 0.831 Å in the ²A" state of VH₂·H₂, indicating a significant activation of the H₂ molecule. However, the H₂ bond distance is only 0.776 Å in the ³B state of CrH₂·H₂ (Figure 2c, C₂ symmetry).

It may be seen that the binding energy involving the lowspin MH_2 complexes is substantially higher than that of the highspin species and the binding energies decrease with increasing atomic number. The stronger dihydrogen bonding in the lowspin state is not surprising. It was found experimentally¹⁶ that the high-spin transition metal ions prevent bonding with the hydrogen molecule and the H₂ is activated more strongly by the atomic transition-metal ion in the low-spin state. This may be explained in terms of $d \rightarrow \sigma^*$ back-donation. By chemical intuition, the ability for electron donation from d orbitals is expected to decrease from the right to the left in the periodic table, because the 3d orbitals penetrate the electron density in the 4s orbitals; therefore, the effective nuclear charges experienced by the 3d orbitals increase rather abruptly from the right to the left in the periodic table. For effective $d \rightarrow \sigma^*$ backdonation to occur, the d electrons should be paired, i.e., in the low-spin state. It has been shown in the case of cationic species that the loss of exchange energy during the bond formation is a very important factor. This argument may also explain the favored "two-electron" versus "one-electron" back-donation.

There is a hotly debated question concerning the nature of the dihydrogen complexes. The barrier to rotation about the M-H₂ axis may be used to tell whether $d(\pi) \rightarrow \sigma^*$ backbonding is important. For the high-spin MH₂·H₂ complexes, we found that the rotation barriers are around 1 to 2 kcal/mol. However, for the low-spin state of VH₂·H₂ (electron configuration: $7a_1^2 3b_2^2 3b_1^2 1a_2$, supporting information, Table 3), the energy difference between the side-on planar and perpendicular conformations is as large as 18 kcal/mol at the TZP CCSD level, indicating a large rotation barrier and a strong $d(\pi) \rightarrow \sigma^*$ back bonding. Unambiguous evidence for the $d \rightarrow \sigma^*$ back bonding has been obtained by examination of the molecular orbitals for the dihydrogen complexes. For the low-spin states $VH_2 \cdot H_2$ $(^{2}A'')$ and CrH₂·H₂ (³B), there is very strong d $\rightarrow \sigma^{*}$ back bonding, as is the case for genuine chemical bonds (Figure 4); this back-bonding is absent in the molecular orbitals of the highspin MH₂·H₂ complexes.

It is important to note that the triplet ground state of TiH₂ leads to the formation of the triplet ground state of the TiH₂·H₂ complex. By contrast, the formation of the ground states of the VH₂·H₂ and CrH₂·H₂ complexes arise from the ⁴A₂ state of VH₂ and the ⁵A₁ state of CrH₂, respectively. Note that both ⁴A₂ VH₂ and ⁵A₁ CrH₂ are excited electronic states, even though they are very close to the ground state energetically. Therefore, we predict that TiH₂·H₂ will be readily formed whenever TiH₂ is in contact with H₂ molecules, whereas VH₂·H₂ and CrH₂·H₂ will be formed only when VH₂ and CrH₂ are energetically excited, for example by photolysis. This prediction is important in the assignment of experimental IR spectra⁴ and in the identification of the possible formation of TiH₂·H₂, VH₂·H₂, and CrH₂·H₂. We will discuss this topic in the final section.

III. The Relative Energies of MH_2 · H_2 Complexes and Their MH_4 Isomers. Quantification of the energy separations between the MH_2 · H_2 structures and their MH_4 isomers is crucial to a proper description of the dihydrogen complex/hydride interconversion. As may be seen from Figure 3b, TiH₄ is lower in energy than its dihydrogen complex isomer TiH₂· H_2 , whereas VH_4 and CrH_4 are higher in energy than their dihydrogen complex (high-spin global minima) isomers by 21.5 and 38.5 kcal mol⁻¹, respectively. However, comparing an MH₄ molecule and a MH_2 · H_2 complex at the same spin state, on the low-spin potential energy surface, the MH₄ molecule is always lower in energy than the dihydrogen complex isomer MH₂· H_2 .

As may be seen from Figure 3a, the energy separations between the high-spin and low-spin isolated MH_2 molecules increase with the atomic number: 33 kcal mol⁻¹ for TiH₂, 40 kcal mol⁻¹ for VH₂, and 59 kcal mol⁻¹ for CrH₂. Because the H_2 binds more strongly to the low-spin MH₂, the energy separation between high-spin and low-spin MH₂·H₂ complexes narrows slightly. For the MH₂·H₂ complexes the energy

Figure 4. (a) The contour map of the 10a" orbital ($d \rightarrow \sigma^*$ back bonding) of ²A" VH₂·H₂ (point group C_s). (b) The contour map of the 5b orbital ($d \rightarrow \sigma^*$ back bonding) of ³B CrH₂·H₂ (point group C_2).

separations between the high-spin states and the comparable low-spin states are still large: 27 kcal mol⁻¹ for VH₂·H₂ and 50.8 kcal mol⁻¹ for CrH₂·H₂. Therefore, we expect that the low-spin MH₄ would be higher in energy than the high-spin MH₂·H₂, unless the isomerization from low-spin MH₂·H₂ to MH₄ is very exothermic, as in the case of isomerization from TiH₂·H₂ to TiH₄.

Experiments have been performed for all three light transition metals (Ti, V, and Cr) in cocondensation with H₂. Experimentally,⁴ only TiH₄ has been observed in the lab,⁴ whereas VH₄ and CrH₄ remain elusive. The reason that TiH₄ is easily formed is perhaps obvious-it is lower in energy than $TiH_2 \cdot H_2$. However, note that a spin flip must occur to form MH₄ from either a MH₂ molecule or a MH₂·H₂ complex, since the fomer has a low-spin ground state, whereas the latter two have highspin ground states. Therefore, the facile spin flip of the Ti system must be another important factor that facilitates the formation of the TiH₄ molecule. Both the ²A₂ ground state of VH₄ and the ³A₂ ground state of CrH₄ have been proven by vibrational frequency analysis to be true minima on the potential energy surfaces (VH₄, see section 1, this work; CrH₄, see ref 15). Both VH₄ and CrH₄ are lower in energy than the lowspin isomers $VH_2 \cdot H_2$ and $CrH_2 \cdot H_2$, respectively. Following the same arguments regarding the spin flip, provided that the lowspin species of MH_2 or $MH_2 \cdot H_2$ (here M = V, Cr) could be obtained, it is probable that both VH₄ and CrH₄ could be formed as well.

B. Comparison between Theoretical and Experimental IR Spectra for the TiH₂, VH₂, and CrH₂·H₂ Systems. I. TiH₂ or TiH₂·H₂? For the TiH₂ molecule, comparison between our theoretical vibrational frequencies and experimental IR spectra⁴ is challenging. At first sight, the agreement is very poor (Table 4). There are two possible factors responsible for this discrepancy.

Table 4. harmonic Vibrational Frequencies and IR Intensities for ${}^{3}B_{1}$ TiH₂ at the TZP CISD and TZP(f,d) CISD Levles of Theory^a

	TiH_2					TiDH				TiD_2			
		this work				this work			this work			expt ^b	
mode	ω (cm ⁻¹)	$\omega (cm^{-1})$ scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\mathrm{cm}^{-1})}$	$\frac{\omega}{(\text{cm}^{-1})}$	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\text{cm}^{-1})}$	ω (cm ⁻¹)	$\omega (cm^{-1})$ scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\text{cm}^{-1})}$	
symm stretch	1611 1612	1530 1531	215 198	1478 ^d 1483 ^e	1154 1154	1096 1096	198 239	1039 ^d 1055 ^e	1142 1143	1084 1084	47 81	$\frac{1058^d}{1071^e}$	
asymm stretch	1609 1604	1528 1523	537 692	1412 ^d 1435 ^e	1612 1609	1531 1528	374 438	1447 ^d 1466 ^e	1164 1161	1105 1103	345 383	1024^{d} 1041^{e}	
bend	326 375	309 356	341 319	496 ^d	284 326	270 309	260 244		235 269	233 255	176 165	376 ^d	

^{*a*} The values in plain text are at the TZP CISD level of theory and the values in boldface are at the TZP(f,d) CISD level of theory. ^{*b*} The vibrational frequencies were scaled by a factor of 0.95 to account for anharmonicity and higher level correlation effects. ^{*c*} Reference 4. ^{*d*} In Kr matrix. ^{*e*} In Ar matrix.

Table 5. Harmonic Vibrational Frequencies and IR Intensities for ³A" TiH₂·H₂ at the TZP CISD Level of Theory

		$TiH_2 \cdot H_2$	$TiD_2 \cdot D_2$				
no.	mode	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)
1	H-H stretch	4139	3932	64	2928	2781	32
2	H-Ti-H symm stretch	1586	1506	218	1116	1060	164
3	H-Ti-H asymm stretch	1558	1480	553	1131	1074	238
4	Ti····H-H wag	958	910	7.9	679	646	4
5	H-Ti-H bend	520	494	274	375	356	136
6	H-Ti····H bend	467	443	36	331	314	20
7	Ti•••H-H torsion	380	361	76	271	257	42
8	H-Ti-H bend	327	310	248	238	226	128
9	Ti ··· H−H wag	252	239	64	181	171	32

^a The vibrational frequencies were scaled by a factor of 0.95 to account for anharmonicity and higher level correlation effects.

Table 6. Harmonic Vibrational Frequencies and IR Intensities for ⁴B₂ VH₂ at the TZP CISD and TZP(f,d) CISD Levels of Theory^a

	VH_2					VDH				VD ₂			
	this work			expt ^c		this work			this work			expt ^b	
mode	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\text{cm}^{-1})}$	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\mathrm{cm}^{-1})}$	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	$\frac{\omega}{(\mathrm{cm}^{-1})}$	
symm stretch	1643 1670	1550 1586	47 67	1545 ^d 1532 ^e	1158 1174	1100 1115	211 236	1095 ^d 1108 ^e	1165 1186	1107 1127	25 36	1079^d 1092^e	
asymm stretch	1597 1612	1517 1531	681 724	1490 ^d 1508 ^e	1621 1643	1540 1561	343 366	1518 ^d 1536 ^e	1151 1161	1093 1103	357 379	1111 ^d 1123 ^e	
bned	322 368	306 350	418 379	529 ^e	280 320	266 304	320 291		231 264	220 251	217 196	386 ^d	

^{*a*} The values in plain text are at the TZP CISD level of theory and the values in boldface are at the TZP(f,d) CISD level of theory. ^{*b*} The vibrational frequencies were scaled by a factor of 0.95 to account for anharmonicity and higher level correlation effects. ^{*c*} Reference 4. ^{*d*} In Kr matrix. ^{*e*} In Ar matrix.

1. Experiments⁴ show that the MH₂ stretching vibrational frequencies are sensitive to the polarizability of the matrix. An increase in the polarizability of the matrix decreases the magnitude of the vibrational frequencies. This effect increases from TiH2·H2 to VH2·H2 to CrH2·H2. For example, the asymmetric stretching frequencies for CrH₂ are 1614 cm⁻¹ in the Ar matrix and 1606 cm^{-1} in the Kr matrix; for VH₂, 1508 cm⁻¹ in Ar and 1490 in Kr; and for TiH₂, 1436 cm⁻¹ in Ar and 1412 in Kr. These shifts correspond to -8, -18, and -24 cm⁻¹ for TiH₂, VH₂, and CrH₂, respectively. This could be one reason that our scaled vibrational frequencies for the TiH₂ molecule are 50 and 110 cm⁻¹ higher than experimental assignments for symmetrical and asymmetrical stretching, respectively. Whereas experiment predicts that the asymmetrical stretch is 50 cm⁻¹ lower than the symmetrical stretching for TiH₂, theory predicts an 8-cm⁻¹ separation. This discrepancy may indicate that the asymmetrical stretch is more sensitive to the matrix environment.4

2. Secondly, the poor agreement may be a consequence of the possible formation of the $TiH_2 \cdot H_2$ complex. Recall that the $TiH_2 \cdot H_2$ complex could be formed as long as TiH_2 was allowed to come in contact with the H₂ molecule. If the $TiH_2 \cdot H_2$ complex (or its deuterated species) forms following the forma-

tion of TiH₂, the experimental IR absorption may be due to TiH₂•H₂ rather than TiH₂. Three observations (Table 5) support this hypothesis, i.e., (I) the H-Ti-H stretching frequencies are much lower for the TiH₂·H₂ complex than for the isolated TiH₂ molecule, making the predictions for TiH₂·H₂ agree more closely with the experimental IR absorption; (II) the separation between symmetric and asymmetric H-Ti-H stretching frequencies is larger for TiH₂·H₂ (28 cm⁻¹) than for the isolated TiH₂ molecule (8 cm^{-1}) , making the predictions for TiH₂·H₂ agree more closely with the experimental IR absorption; and (III) the experimental IR absorption for the H-Ti-H bending mode (496 cm⁻¹) is 160 cm⁻¹ higher than the corresponding theoretical value (356 cm⁻¹, scaled, Table 4). By contrast, the H-Ti-H bending mode (or Ti···H₂ wag) in TiH₂·H₂ at 494 cm⁻¹ is in excellent agreement with the experimental absorption. This fact gives support to our suggestion that the observed species is $TiH_2 \cdot H_2$ rather than TiH₂. Experimentally, the IR spectra of the Ti_xH_y systems were sensitive to the Ti concentration, and a low Ti concentration was used. When a high Ti concentration was used, there was a strong broad absorption around 1500 cm^{-1} . This broad peak was thought to result from a spontanous reaction of the Ti₂ or Ti₃ clusters with H₂. However, it is

Table 7. Harmonic Vibrational Frequencies and IR Intensities for ⁴A" VH₂·H₂ at the TZP CISD and TZP(f,d) CISD Levels of Theory^a

		$VD_2 \cdot D_2$					
no.	mode	ω (cm ⁻¹)	$\omega (cm^{-1})$ scaled ^b	IR intensity (km/mol)	ω (cm ⁻¹)	$\omega (cm^{-1})$ scaled ^b	IR intensity (km/mol)
1	H-H stretch	4157	3949	3	2940	2793	1
		4232	4020	4	2993	2843	2
2	H-V-H symm stretch	1654	1571	29	1172	1060	15
	-	1674	1590	43	1187	1127	24
3	H-V-H asymm stretch	1600	1520	774	1152	1094	399
4	$V \cdots H_2$ rock	1050	997	5	743	705	3
		1081	1026	5	769	730	3
5	$V \cdots H_2$ wag	551	523	4	400	380	8
	Ū.	577	548	8	418	397	11
6	$V \cdots H_2$ torsion	462	438	0	327	310	0
		455	432	2	322	306	1
7	$V \cdots H_2$ wag	445	422	452	318	302	228
	Ū.	435	413	462	311	295	232
8	H-V-H bend	268	254	7	191	181	3
		283	269	7	203	192	4
9	$V \cdots H_2$ wag	232	220	498	167	158	257
	-	253	140	457	180	171	235

^{*a*} The values in plain text are at the TZP CISD level of theory and those in boldface are at the TZP(f,d) CISD level of theory. ^{*b*} The vibrational frequencies were scaled by a factor of 0.95 to account for anharmonicity and higher level correlation effects.

Table 8.	Harmonic	Vibrational	Frequencies	and IR	Intensities	for	⁵ A ₁ CrH ₂ •H	l_2 at the	TZP	CISD	Level	of Theory	y
----------	----------	-------------	-------------	--------	-------------	-----	---	--------------	-----	------	-------	-----------	---

		$CrD_2 \cdot D_2$					
no.	mode	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)	ω (cm ⁻¹)	ω (cm ⁻¹) scaled ^a	IR intensity (km/mol)
1	H-H stretch	4286	4071	0	3032	2880	0
2	H-Cr-H symm stretch	1723	1636	10	1219	1060	5
3	H-Cr-H asymm stretch	1606	1525	862	1157	1102	443
4	Cr···H-H bend	996	946	6	705	670	4
5	Cr···H-H bend	523	497	430	379	360	213
6	H-Cr···H bend	495	470	370	356	338	191
7	Cr ··· H_2 stretch	473	449	7	337	320	15
8	H-Cr···H bend	466	442	0	329	312	0
9	H-Cr···H bend	351	333	10	250	337	6

^a The vibrational frequencies were scaled by a factor of 0.95 to account for anharmonicity and higher level correlation effects.

possible that this broad peak results from TiH_2 , which is favored at a high Ti/H_2 ratio.

II. VH_2 and VH_2 · H_2 ? For the VH₂ molecule, it seems that our theoretical harmonic vibrational frequencies for the stretching modes agree with experimental assignments fairly well. However, when the possible existence of $VH_2 \cdot H_2$ is taken into consideration, the situation becomes more complex. The problem is that the H–V–H stretching frequencies for the VH₂ molecule and the $VH_2 \cdot H_2$ complex (Tables 6 and 7) are very close. From the analysis in the previous sections, we predict that the VH₂·H₂ complex is formed from H₂ with an excited VH₂ molecule. Therefore, $VH_2 \cdot H_2$ may coexist with the ground state of VH₂ after photolysis of the matrix, although it is difficult to deduce the concentration ratio. There are some less intense side bands with the same vibrational modes in the experimental IR spectra.⁴ Xiao et al.⁴ attributed these bands to different matrix sites. However, it may be more plausible that the bands are due to either VH_2 or $VH_2 \cdot H_2$.

Comparing the theoretical vibrational frequency to the experimental assignment for the VH₂ bending, it seems evident that VH₂·H₂ was formed. Our theoretical value for the VH₂ bending is 350 cm⁻¹, whereas the experimental absorption falls at 529 cm⁻¹. However, as may be seen from Table 8, the experimental 529-cm⁻¹ absorption is probably due to the V····H₂ wag for the VH₂·H₂ complex, which is predicted to be 548 cm⁻¹ at the TZP(f,d) CISD level of theory.

The 1995 ESR experiments by Van Zee, Li, and Weltner^{4b} may indicate that the VD₂ molecule interacts with D₂ in the deuterium matrix. Van Zee concluded that the VD₂ molecule is nearly linear in the deuterium matrix, in contrast to our

theoretical results (Table 2) and the experimental IR results.^{4a} One explanation of such a difference is that VD₂ interacts with D₂ more strongly in the linear than in the bent conformation to form VD₂•(D₂)_n. We predict a ⁴A₂ state VH₂•H₂ (Figure 1d), in which the VH₂ fragment is nearly linear. This ⁴A₂ state lies only 1.5 kcal mol⁻¹ higher in energy than the ⁴A'' ground state VH₂•H₂ (Figure 1b), in which the VH₂ fragment is bent. Therefore, it may be possible that VD₂ is nearly linear in the deuterium matrix.

III. CrH₂·H₂. Of the three possible dihydride dihydrogen complexes, namely TiH2·H2, VH2·H2, and CrH2·H2, only CrH₂•H₂ is thought to have been observed experimentally.^{4a} However, it seems that the original identification was erroneous. The comparison of our theoretical vibrational frequencies for $CrH_2 \cdot H_2$ ($CrD_2 \cdot D_2$) with the experimentally assigned spectra for CrH₂, CrH₃, and CrH₂·H₂ (and their corresponding deuterated species) reveals an important discrepancy. Based on the observation of the double peaks in the range of 1640 to 1606 cm^{-1} , Xiao et al. proposed the formation of $CrH_2 \cdot H_2$. Further, a very strong absorption in 1510 cm⁻¹ was assigned to CrH₃ by Xiao et al.⁴ However, as can be seen in Table 8, this 1510cm⁻¹ absorption belongs unambiguously to the asymmetrical stretch of CrH₂·H₂. The double peaks in the range of 1640 to 1606 cm^{-1} could be due to matrix site effects. Actually, the 1621- and 1579-cm⁻¹ absorptions, previously assigned to CrH₂•H₂, were observed in the Kr matrix only and no such absorption was observed in the Ar matrix. By contrast, the 1510-cm⁻¹ absorption was observed in both matrices. This finding is more consistent with the idea that CrH2·H2 should be formed independent of the host matrix.

5. Conclusions

We have investigated the structures and potential energy surfaces for transition metal dihydrides, MH₂, dihydride dihydrogen complexes, $MH_2 \cdot H_2$, and tetrahydrides, MH_4 , (M = Ti, V, and Cr). The ground electronic states for TiH₂ and VH₂ were found to be ${}^{3}B_{1}$ and ${}^{4}B_{2}$, respectively. The bond angles for the TiH₂ and VH₂ molecules are predicted to be 142° and 138.8°, respectively, at the TZP(f,d) CISD level of theory. On the low-spin potential energy surfaces, the lowest lying electronic states for the TiH₂, VH₂, and CrH₂ molecules are ¹A₁, ${}^{2}A_{1}$, and ${}^{3}B_{2}$, respectively. The energy separations between the ground state and the lowest lying low-spin state were found to be 33, 40, and 59 kcal mol⁻¹ for the TiH₂, VH₂, and CrH₂ molecules, respectively. The ability to form dihydrogen complex decreases with increasing atomic number. The d $\rightarrow \sigma^*$ back-donation dominates the periodic trend for the formation of MH₂·H₂ complexes. All three MH₂·H₂ complexes have highspin ground states, primarily due to the fact that the corresponding parent dihydrides are in the high-spin ground state. It was found that the low-spin dihydrides interacted with the H₂ moiety more strongly than did the high-spin species. The d \rightarrow σ^* back-donation was so strong for the low-spin TiH₂ that H₂ dissociates without barrier upon contact with singlet TiH₂ to form TiH₄. The energy separations between the ground state and the lowest lying low-spin state were 27 and 51 kcal mol^{-1} for VH₂·H₂ and CrH₂·H₂, respectively. The dihydrogen binding energies were evaluated to be 2.8 kcal mol⁻¹ for the high-spin TiH₂, 7.1 and 22.4 kcal mol⁻¹ for the high-spin and the lowspin VH₂, respectively, and 3.1 and 15.5 kcal mol⁻¹ for the high-spin and the low-spin CrH₂, respectively, at the TZP(f,d) CCSD(T) level of theory.

The VH₄ molecule is predicted to have D_{2d} symmetry with a bond length of 1.622 Å and bond angles distorted from the tetrahedral 109.5° to 114.1° and 100.5° at the TZP(f,d) CISD level of theory (Figure 1a). The ground state electron configuration for the VH₄ molecule was $1a_1^22a_1^21b_1^21e^43a_1^22b_1^22e^{-4}4a_1^23b_1^23e^45a_1$, leading to the ²A₁ electronic state.

Closed-shell TiH₄ is 9 kcal mol⁻¹ lower in energy than its triplet ground state $MH_2 \cdot H_2$ isomer, whereas VH_4 and CrH_4 are higher in energy by 22 and 39 kcal mol⁻¹, respectively, at the TZP CCSD level of theory. However, comparing MH_4 and $MH_2 \cdot H_2$ in the same spin state, MH_4 is always lower in energy than its dihydrogen complex isomer, $MH_2 \cdot H_2$, on the low-spin potential energy surface.

Comparison between the present work and the experimental matrix isolation IR spectra from the cocondensation of transition metal atoms (Ti, V, and Cr) with H₂ appears to confirm the existence of $CrH_2 \cdot H_2$ by identifying a strong unique absorption at 1510 cm⁻¹. It is suggested that TiH₂ \cdot H₂ rather than TiH₂ may be observed experimentally, and that VH₂ \cdot H₂ may be formed concomitently with the VH₂ molecule.

Acknowledgment. We thank Drs. Y. Xie, Y. Yamaguchi, J. R. Thomas, and B. J. Deleeuw for helpful discussions. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Fundamental Interactions Branch, Grant No DE-FG09-87ER13811.

Supporting Information Available: Tables giving the total energies of the MH_2 and structures for the stationary points of MH_2 · H_2 in different arrangements and electronic configurations as well as the theoretical harmonic vibrational frequencies and IR intensities for the VH_4 and the low-spin MH_2 · H_2 (7 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA951376T